
www.manaraa.com

Formalization of Indexing in Data Management

Maarten M. Fokkinga

DB group, dept INF, fac EWI, University of Twente, Netherlands

Version 0.96, of May 3, 2004, 13:02

Abstract. Indexing is an important notion for efficient data management. It
prescribes the use of a particular additional data structure for direct or improved
access to the locations where requested values have been stored. Indexing itself
makes no assumptions about the structure of the actual storage of values or indices
(but a realization does). All this is elegantly formalized in the Z notation.

1 Introduction. Indexing is an important notion for efficient data management. We
formalize the notion of indexing: the use of an additional data structure Idx for direct or
improved access to the locations where requested values have been stored in a store Store.
The notion of indexing itself makes no assumptions about the organization and structure of
the storage of values or indices: Store and Idx are parameters standing for just sets.
To express our ideas, we use a stylized set and predicate notation, with a facility for scope

control. The notation is known as the Z notation [2]; there is an international standard for
it, it is widely used for software specification, and there are various tools to support usage of
the notation, such as a type checker and theorem prover [1]. All our displayed formulas have
been type-checked (but some universal quantifications near the beginning of a formula have
not been printed).
In the next section the crux of indexing is formalized; thereafter follows a section with

some actual implementations that satisfy the specifications we have given. Both sections
suggest that we are dealing with ‘databases’ only, but in the final section we briefly show that
indexing in other fields of data management are covered as well.

The crux of indexing

2 Overview. In this section we give four specifications of a database for storing U × V
values: DB , DBL, DBi , and DBI . What we specify as a database is, in terms of the relational
model, just one table with two anonymous attributes, having type U and V , respectively.
Besides parameters U and V , the specifications make also use of parameters Store, Loc, and
Idx ; eventually each of these parameters needs be replaced by one set or another.
Specification DB is the interface given to an end-user of the database; it provides put

and get operations for storing and retrieving values. For brevity and simplicity we abstract
away a delete operation: so, once a value has been put into the store, it remains in the store
forever.
Specification DBL is an auxiliary refinement of DB , formalizing the notion of location of

a value in the store, without which the notion of index makes no sense.

1

www.manaraa.com

Specifications DBi and DBI formalize the crux of indexing ; without any assumptions
about implementations of DB , except that locations are available as specified by DBL, it
assumes the existence of an additional data structure Idx , which is just a set parameter,
and prescribes how this is to be used, thus making the retrieval more efficient: values are
retrieved by direct access (in case of DBi) or improved access (in case of DBI) to their
location. Specification DBI is more general than DBi .

3 End-user interface. A database system provides an initial store init , and operations
put and get to store and retrieve pairs (u, v) of values; the specification is called DB . Sets
U , V , and Store are parameters of the specification; nothing is assumed about these (and need
be known by the end-user) except that they are sets. In an implementation, some particular
choice for these has to be made; U and V will be the data types that the user want to store,
and, independently, Store could be a set or a table or a tree of U×V values:

DB [U ,V ,Store]
init : Store
put : Store � (U ×V) � Store
get : Store � U � � V

get init u = �
get (put s (u ′, v)) u = get s u ∪ (if u = u ′ then {v} else �)

Thus DB merely proclaims the existence of an init , put and get with the mentioned types
and properties, in terms of parameters U ,V ,Store. The properties say, roughly, that get s u
yields the set of all v -values for which the pair (u, v) has been put into the store by put
where the initial store is init . Since nothing is specified about the structure of Store, this
specification characterizes not only relational databases, but also hierarchical and network
databases, or whatever!
It is easy to make U into a key of the database, by requiring that there is at most one

pair (u, . . .) in Store for each u. The notion of index, defined below, is independent of the
choice to make U into a key or not.

4 Locations. The notion of index only makes sense when the notion of location exists: an
index of a value is a location of the value in the store. So here we extend specification DB
with locations, and call it DBL. The specification does not say how a location looks like.
There can be various realizations; for instance, a location can be a number, so that Store is a
kind of table, or a location can be a path in a tree, so that Store is a kind of tree. Function
newloc yields a location not in use by its store:

DBL[U ,V ,Loc,Store]
DB [U ,V ,Store]
newloc : Store � Loc
putl : Store � Loc � U ×V � Store
getl : Store � Loc � U ×V

put s uv = putl s (newloc s) uv
get s u = {v : V | (u, v) ∈ ran(getl s)}

2

www.manaraa.com

Thus DBL merely proclaims the existence of init , put , get , newloc, putl , and getl with the
types and properties as mentioned here implicitly (namely in DB) or explictly. Note that the
evaluation of get s u suggested here is a scan over the entire “contents of store s”, that is, over
the range of getl s. The definitions here of put and get together with their properties from
the imported DB , imply several additional properties of putl , getl , and newloc. For example:

∀DBL[U ,V ,Loc,Store] • dom(getl init) = � ∧ newloc s /∈ dom(getl s)

A realization of DBL should establish these derived properties — for otherwise it is not a real-
ization of DBL. Given a realization of DBL, one might want to hide operations newloc, putl ,
and getl , since these are not to be used by and end-user; such hiding is done in paragraph 7.

5 Indexing. An index is a data structure that, for each value, stores the locations where
that value has been stored; or, more general, it gives for each value a part of the storage where
that value is located if it occurs at all. We formalize these variants of indexing in DBi and
DBI , respectively. Since our previous specification of a database is so general, we can say
that an index itself is a database, storing pairs (u, l) of a value u and a location l incase of
DBi , and storing pairs (u,L) of a value u and a set L of locations in case of DBI .

The simple case DBi. As explained, an indexed database, DBi , actually consists of two
databases; one to store the users U×V pairs (specified by DBL[U ,V ,Loc,Store] with Store
as store) and another to store the value-location pairs (specified by DB [U ,Loc, Idx] with
Idx as store). We combine these two into one new database with the product Store×Idx as
store: DB [U ,V ,Store × Idx]. In order not to confuse the operations of the two constituent
databases with each other and with the newly formed database, we decorate their names with
a single and double quote, respectively. In terms of these auxiliary operations the end-user
operations are specified:

DBi [U ,V ,Loc,Store, Idx]
DBL′[U ,V ,Loc,Store]
DB ′′[U ,Loc, Idx]
DB [U ,V ,Store × Idx]

init = (init ′, init ′′)
put (s, idx) (u, v) = (put ′ s (u, v), put ′′ idx (u,newloc′ s))
get (s, idx) u = {l : get ′′ idx u • second (getl ′ s l)}

Thus DBi merely proclaims the existence of init ′, put ′, get ′, newloc′, putl ′, getl ′, init ′′, put ′′,
get ′′, init , put , and get with the types and properties as mentioned implicitly and explicitly.
In addition to what DB specifies for init and put , the first two explicit properties specify that
init and put delegate the effects on the left component of the Store×Idx store to the auxiliary
init ′ and put ′, and that they delegate the effects on the right component of the Store×Idx
store to the auxiliary init ′′ and put ′′. The third property of DBi gives an equation for get (in
addition to what DB specifies for get); the equation suggests an evaluation that no longer is
a scan over the range of getl ′ s (as suggested in DBL′) but instead a direct retrieval from the
locations get ′′ idx u given by the index, with no assumption at all how Store and Idx looks
like. If get ′′ can be evaluated efficiently, then so can get . This is the crux of indexing!
Given a realization of DBi , one might want to hide all primed and doubly primed opera-

tions, since these are not to be used by and end-user; such hiding is done in paragraph 9.

3

www.manaraa.com

The general case DBI . Rather than storing a single location for each value, in the more
general case an index gives a part of the storage where the value can be found, if it occurs at
all. This allows for two extremes: the part of the storage is just one location (like in DBi), or
the part of the storage is just the entire storage. The change to DBi in order to obtain DBI
is clear: generalize, at appropriate places, the single location to a set of locations:

DBI [U ,V ,Loc,Store, Idx]
DBL′[U ,V ,Loc,Store]
DB ′′[U , � Loc, Idx]
DB [U ,V ,Store × Idx]

init = (init ′, init ′′)
∃L : � Loc • put (s, idx) (u, v) = (put ′ s (u, v), put ′′ idx (u,L ∪ {newloc ′ s}))
get (s, idx) u = {v : V ; L : get ′′ idx u | (u, v) ∈ (getl ′ s) � L � • v}

Not only the above equation for put is a straightforward generalization of the equation for
put in DBi , but also the equation for get looks very similar to an equation for get that is
derivable in DBi :

∀DBi [U ,V ,Loc,Store, Idx] •
get (s, idx) u = {v : V ; l : get ′′ idx u | {(u, v)} = (getl ′ s) � {l} � • v}

Again, if get ′′ can be evaluated efficiently, then so can get .

Realizations of the specifications

To show the realizability of the specifications given above, we give several realizations: with
relations, tables, and trees. We begin with the “hard” part: realizations without indexing;
once this has been done, realizations of indexed databases come for free (paragraph 9)!

6 Store as relation. The simplest realization of DB is to take relations U � V as Store:

DB0[U ,V]
DB [U ,V ,U � V]

init = �
put s uv = s ∪ {uv}
get s u = {v : V | (u, v) ∈ s}

Since DB0 imports DB , it trivially implies the properties of DB :

∀DB0[U ,V] • DB [U ,V ,U � V]

However, DB0 could be inconsistent, for example because its newly added properties conflict
with those of the imported DB . We claim without proof that this is not the case:

∃DB0[U ,V] • true

Similar claims can be made for the following realizations as well.

4

www.manaraa.com

7 Store as table. We take stores to be tables (sequences, in our notation), and locations
to be natural numbers. Thus we implement not only DB but even DBL:

DB1[U ,V]
DBL[U ,V , � , seq(U ×V)]

newloc s = 1 +#(dom s)
init = 〈 〉
putl s l uv = s � 〈uv〉
getl s l = s l

Notice that putl discards its l -argument; it is safe to do so since from DBL it follows that the
actual l -argument is indeed the location where putl stores the uv -value. It also follows that
the ‘definition’ in DBL of get may now be simplified somewhat:

∀DB1[U ,V] • get s u = {v : V | (u, v) ∈ ran s}

The evaluation of get s u suggested here is still a scan over the entire sequence (table) s.

Aside. By hiding newloc, putl , and getl from DB1 we obtain a realization of DB that
no longer satisfies DBL since it doesn’t specify the required auxiliary operations:

DB1[U ,V] \ (putl , getl ,newloc)

Formally, this hiding is defined by putting an appropriate existential quantification for
putl , getl , and newloc in front of DB1[U ,V]. We claim without proof that in this DB1-
with-hiding no more properties for init , put , get are derivable than in DB . Thus, by
giving this DB1-with-hiding to an end-user, the end-user knows just what is specified
by DB , whereas an implementation that satisfies the full DB1 does have the auxiliary
putl , getl ,newloc and all the extra properties.

8 Store as tree. [This paragraph is yet another, somewhat complicated and not very
practical, illustration; it may be skipped without loss of continuity!] We take the store to be
a binary tree with pairs (u, v) at the leafs. A path in the tree functions as location; a path
is a sequence of indications 0 (left) and 1 (right): seq{0, 1}. Function newloc decides, given
all paths of a tree, what path to extend with what label; actually, the newloc defined below
keeps the tree balanced — it extends the shortest path with the appropriate label. We first
recall the well-known lexicographic order on sequences:

(≺) == {p, q : seq 	 | (∃n : 0 . . min{#p,#q} •
(∀ i : 1 . . n • p i = q i) ∧ (#p = n < #q ∨ p (n + 1) < q (n + 1)))}

DB2[U ,V]
DBL[U ,V , seq{0, 1}, seq{0, 1} � U ×V]

newloc � = 〈0〉
p ∈ dom s ∧ (∀ p ′ : dom s | p ′ 6= p • p ≺ p ′)⇒

newloc s = if front p � 〈1〉 ∈ dom s then p � 〈0〉 else front p � 〈1〉

5

www.manaraa.com

It follows that init and put establish and maintain the property that the lengths of the paths
differ at most one, so that the stores are balanced trees:

Balanced [U ,V] == {s : seq �
� U ×V | (max (# � dom s �)−min(# � dom s �)) ≤ 1}

∀DB2[U ,V] • init ∈ Balanced ∧ put ∈ Balanced � (U ×V) � Balanced

Again, DB2 can now be restricted to a realization of DB only, by hiding the auxiliary entities.

9 Realizations with indexing. Since an indexed database is just a combination of two
databases, we are readily done with indexed realizations: they come for free! We can take
each realization of DBL (for instance, DB1 and DB2) as the “underlying database”, and
each realization of DB (for instance, DB0, DB1, and DB2) as the “index database”. For
example, to specify DB1 as the underlying database and DB0 as the index database, we
take appropriate instances of DB1′ and DB0′′ and glue them together with the properties
described in DBI :

DB 1 0[U ,V] =̂ DBI [U ,V , � , seq(U ×V),U � �] ∧ DB1′[U ,V] ∧ DB0′′[U , �]

Similarly for the other five combinations of an underlying and index database.
As in paragraph 7, we can hide all auxiliary entities from DB 1 0:

DB 1 0[U ,V] \ (init ′, put ′, get ′, putl ′, getl ′,newloc′, init ′′, put ′′, get ′′)

This is a specification that proclaims the existence of init , put , and get with some properties.
We claim without proof that no more properties of init , put , get can be derived from this
specification than those that follow from DB — although DB 1 0 itself specifies the exis-
tence of the auxiliary entities together with their intended properties and suggested efficient
evaluation for get .

Concluding remarks

10 Physical aspects. Our formalization of the crux of indexing is entirely at the so-called
logical level; physical aspects like caching, the place on disk where values are stored, and the
choice whether to keep the index in memory, are completely absent. These aspects, of course,
do have an influence on the efficiency, and, after all, efficiency is the reason why indexing is
introduced in the first place. Yet, the formalization shows that already at the logical level the
main (a main?) efficiency gain is apparent: instead of a scan over the entire store, a retrieval
can be done with direct access to the locations where the relevant values have been stored.

11 Beyond databases. Having formalized the notion of indexing in databases, the ques-
tion arises what indexing is in information retrieval or in any other field of data management.
Fortunately, our notion of ‘database’ as specified by DB in paragraph 3 is so general that
these other fields are covered as well. For example, in information retrieval one stores docu-
ment addresses and retrieves document addresses by giving terms that should occur in the
documents — this description abstracts from ranking the documents. These systems satisfy
DB when we take U to be the set of all terms in all documents, and V to be the set of
document addresses. Inserting a document into an information retrieval system amounts to

6

www.manaraa.com

putting pairs (t , a) into the store for all terms t that occur in the document at address a.
A query with term t yields the document addresses whose documents contain t ; according
to DB this can be done by get since get s t yields “all a for which (t , a) has been put
into s” (see paragraph 3). In a realization without indexing there is no other option for an
implementation of get than to inspect each pair in the store and see whether t is the first
component of the pair; with indexing, the index gives for each term t the locations where a
pair (t , a) is stored, so that the required document addresses are efficiently retrieved.

References

[1] Jonathan Bowen. The Z notation — WWW page. http://www.comlab.ox.ac.uk/

archive/z.html.

[2] J.M. Spivey. The Z notation: a reference manual (2nd edition). Prentice Hall Interna-
tional, UK, 1992.

7

